Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 1291-1302, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38170593

RESUMEN

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.


Asunto(s)
Celobiosa , Cristales Líquidos , Glucolípidos/química , Cristales Líquidos/química , Rastreo Diferencial de Calorimetría , Microscopía
2.
Soft Matter ; 19(24): 4519-4525, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37283286

RESUMEN

The phase behavior of ternary blends composed of two homopolymers (A, B) and their corresponding diblock copolymer (A-B) has been widely studied, with emphasis on the volumetrically symmetric isopleth and the formation of bicontinuous microemulsions. However, almost all the previous studies employed linear polymers, and little is known about the impact of polymer architecture on the phase behavior of such ternary blends. Here, we report the self-assembly of three sets of ternary blends of polystyrene (PS) and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMAn), with different lengths of oligo(ethylene glycol) side chains n. Small-angle X-ray scattering was used to probe the phase behavior at different compositions and temperatures. The order-to-disorder transition temperature was found to be impacted by the side chain length. It was also observed that longer side chains lead to poorer miscibility of homopolymers in the corresponding block, resulting in a more "dry-brush" like swelling behavior.

3.
ACS Macro Lett ; 10(8): 1035-1040, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549119

RESUMEN

A series of symmetric poly[(oligo(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]-block-polystyrene (PsOEGMA-PS) diblock copolymers were synthesized as a model system to probe the effect of charge fraction on the phase behavior of charged-neutral single-ion conducting diblock copolymers. Small-angle X-ray scattering (SAXS) experiments showed that increasing the charge fraction does not alter the ordered phase morphology (lamellar) but increases the order-disorder transition temperature (TODT) significantly. Additionally, the effective Flory-Huggins interaction parameter (χeff) was found to increase linearly with the charge fraction, similar to the case of conventional salt-doped diblock copolymers. This indicates that the effect of counterion solvation, attributed to the significant mismatch between the dielectric constant of each block, provides the dominant effect in tuning the phase behavior of this charged diblock copolymer. We therefore infer that electrostatic cohesion (local charge ordering induced by Coulombic interactions), which is predicted to suppress microphase separation and lead to asymmetric phase diagrams, only plays a minor role in this model system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...